IOWA’S HISTORY OF CONCRETE OVERLAY PERFORMANCE

Dan King, E.I.T.
Iowa Concrete Paving Association

ICPA
IOWA CONCRETE PAVING ASSOCIATION
ConcreteState
OUTLINE

- Concrete Overlays in Iowa
- Project Background & Objectives
- Data Collection & Compilation
- Results and Analysis
- Field Reviews
ACKNOWLEDGMENTS

- Full Report: Performance of Concrete Overlays in Iowa
 - Phase I of Iowa Highway Research Board TR-689

- Project Team:
 - CP Tech Center: Jerod Gross, Dale Harrington, Dr. Peter Taylor
 - Iowa State University: Yu-An Chen, Dr. Halil Ceylan, Inya Nnelanya, Dr. Omar Smadi
Concrete overlays: increasing use and acceptance nationwide over past few decades

CP Tech Center Guide:
Iowa: over **2,000** centerline miles of concrete overlays have been constructed since the late ‘70s

- Over half constructed since 2005
- Mostly on county highway system
CONCRETE OVERLAYS IN IOWA

- National perspective
 + ACPA overlay project explorer:
How well have Iowa’s overlays performed? (How long do they last?)

- Approximately 470/506 overlay projects are still in service today
- Includes 68/96 constructed before 1990
- Compare to older sources that indicate expected service life for a concrete overlay is only about 20 years
However, as of 2015, there had been no attempt to characterize performance of overlays to determine expected service life & what made projects successful.
PROJECT OBJECTIVES

- Define performance of Iowa’s concrete overlays
 - Create performance curves
 - Analyze specific design choices and characteristics and link to performance
 - Thickness
 - Joint spacing
 - Traffic
 - Overlay type (thin bonded, unbonded)

- Incorporate lessons learned to improve overlay design and performance
DATA COMPILATION & COLLECTION

- Automated pavement condition data: Iowa Pavement Management Program (IPMP)
 - Opt-in program for local agencies
 - Data collection began in early 2000s (opt-in)
 - Since 2013, all streets & roads are covered every other year
- This data then combined with ICPA overlay project records to produce the complete data set
OVERLAY TYPES

- Bonded Concrete Overlay of Concrete (BCOC)
- Bonded Concrete Overlay of Asphalt (BCOA)
 + Defined as thickness \leq 6 inches
- Unbonded Concrete Overlay of Concrete (UBCOC)
- Unbonded Concrete Overlay of Asphalt (UBCOA)
 + Defined as thickness $>$ 6 inches
DATA DISTRIBUTION

- Typical designs in Iowa
 - Early on: 6 inches on asphalt ("whitetopping") or 6+ inches unbonded on concrete
 - Performance data for projects up to 40 years old

Washington County, IA, Constructed 1977
DATA DISTRIBUTION

- Typical designs in Iowa
 - ‘00s: more types of projects, including thinner overlays
 - Advent of new design procedures, shorter slabs, fiber-reinforcement
 - About 10 years worth of data, with some exceptions

Boone, IA, Constructed 2005
Full data set contains all overlay types/designs:

- BCOA: 18% (Number of projects: 178)
- BCOC: 32% (Number of projects: 13)
- UBCOA: 3% (Number of projects: 69)

Note: Total number of projects is 385
DATA DISTRIBUTION

- **Distribution based on slab thickness:**

<table>
<thead>
<tr>
<th>PCC slab thickness (in.)</th>
<th>Total number of projects</th>
<th>Percent of data based on number of projects (%)</th>
<th>Project length (mile)</th>
<th>Percent of data based on length of projects (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>3</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>13</td>
<td>283</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>9</td>
<td>178</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>186</td>
<td>48</td>
<td>621</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>11</td>
<td>177</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>13</td>
<td>165</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>2</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>387</td>
<td>100</td>
<td>1,499</td>
<td>100</td>
</tr>
</tbody>
</table>
Performance metrics are characterized by PCI (Pavement Condition Index) & IRI.

The IPMP PCI equation incorporates:
- IRI (accounts for 40% of PCI)
- Transverse Cracking
- Joint Spalling
- D-cracking (no faulting)

Le Mars, IA, Constructed 2010
PERFORMANCE METRICS

× Performance charts:

× PCI scale:
 + Excellent: 81-100
 + Good: 61-80
 + Fair: 41-60
 + Poor: 21-40
 + Very Poor: 0-20

Image: Pavement Interactive
RESULTS AND ANALYSIS

Data set as a whole:

- Total number of data points: 1,212
- Total number of projects: 385

PCI = 60%
Age = 35 year

Figures: Chen and Ceylan
RESULTS AND ANALYSIS

Data set as a whole:

- FHWA Threshold 170 in/mile
- $R^2 = 0.27$
- Total number of data points: 1,212
- Total number of projects: 385
- ~40 years to IRI = 170

Figures: Chen and Ceylan
RESULTS AND ANALYSIS

- BCOA only (organized by thickness):

![Graph showing PCC slab thickness vs. Age](image)
RESULTS AND ANALYSIS

× BCOA only (organized by joint spacing):

- Figures: Chen and Ceylan

![Diagram](image)

- Short slab designs
- PCI = 60%
- Total number of data points: 428
- Total number of projects: 162

Figures: Chen and Ceylan
RESULTS AND ANALYSIS

× UBCOA only (organized by thickness):

![Graph showing PCC slab thickness (PCI vs. Age)](image)

- PCI = 60%
- Total number of data points: 172
- Total number of projects: 61

Figures: Chen and Ceylan
RESULTS AND ANALYSIS

- UBCOC only (organized by thickness):

![Graph showing PCC slab thickness (PCI vs. Age) with data points for different thicknesses and PCI categories. The graph includes trend lines and notes on data points.]

Total number of data points: 451
Total number of projects: 117

Figures: Chen and Ceylan
RESULTS AND ANALYSIS

Key findings and trends:

+ Overall performance of Iowa’s concrete overlays has been excellent
 - As a whole: about 35 years to PCI = 60
 - About 40 years to IRI = 170 in/mi
+ Good performance from each of BCOA, UBCOA & UBCOC
 - Overlays of asphalt slightly better than UBCOC
 - BCOC: less successful overall, but performed well in context of design life expectations
RESULTS AND ANALYSIS

Key findings and trends:

- **Thickness**
 - In general: thicker overlays have performed better for all overlay types (e.g. for BCOA, 6” > 5” > 4”)

- **Transverse joint spacing**
 - Good early performance from short slab designs (6”) on BCOA/thin overlays
 - Older designs with 15-20 foot slabs performed well long-term
 - 12 foot slabs—inconclusive

- **Traffic—inconclusive**
 - Most of these projects are low-volume, <1,000 vpd
 - Not enough truck traffic data available from local agencies
RESULTS AND ANALYSIS

- 12 foot transverse joint spacing
 - Across multiple splits, apparent decline in performance of overlays with 12 foot joint spacing (even compared to longer spacings)
 - UBCOA (organized by joint spacing):

Figures: Chen and Ceylan
To supplement data analysis, field reviews were performed.

- Verify findings and investigate trends, outliers.
FIELD REVIEWS

× Observed distresses:

+ Materials-related
FIELD REVIEWS

× Observed distresses:

 + Rough ride—construction or curling/warping
 + Occasionally faulting

Buchanan County, IA, Constructed 1996
FIELD REVIEWS

- Observed distresses:
 + Load-related, possibly mis-designed or under-designed
FIELD REVIEWS

Key takeaways:

- Observed performance generally matches data
- Poor performing outliers & early failure causes:
 - Materials-related
 - Load-related/under-design
 - Rough ride
- In short... mostly the same issues that we run into with conventional PCC pavements
 - Be aware of increased potential for curling/warping
 - Beyond above explanations, no direct observations to indicate that there’s a specific problem with 12 ft joint spacing design
CONCLUSIONS

- Overall performance of Iowa’s concrete overlays has been excellent
 + Upwards of 30-40+ year performance life
 + Overlays are very well-suited to county highways
 + Good success to date on interstate, state highways, and city streets as well
NEXT STEPS

- Move from performance history → survivability, performance models
- Continue compiling data, keeping the database updated
Thank you!