Erosion-Based Design for PCC Pavements

Dan Zollinger, Ph.D., P.E.
Zachry Department of Civil Engineering
Texas A&M University
Jointed Concrete Pavement Components

- Traffic Model
- Wheel Load Stress Model
- Subbase Drainage Model
- Subbase Erosion Model
- Slab/Subbase Interface Model
JCP Erosion Related Distress
Subbase Erosion Model/Capability & Components

The three main elements of erosion:

- Rate of Erosion of the base/subbase
- Existence of Moisture under the slab
- Traffic

Properties - Lab
Model - Tested Properties
Performance - Field
Faulting and Erosion Damage

\[\% E = \frac{f_i}{f_\infty} = e^{-\left(\frac{\rho}{D_i}\right)^\beta} \]

- \(f_i \) – faulting in time
- \(f_\infty \) – ultimate faulting

Components

- Slab/Base Interface Model
 - Slab Set
 - C & W Behavior
 - Friction
- Joint Infiltration Model
- Joint Sealant Bond Model
- Calibration & Assessment
 - Lab
 - Field

\[D = \sum \frac{N_i}{N_f} \times (\% \text{Wet Days}) \]

\[D_{i-m} = D_{i-h} \]
Erosion (between layers)
- Shear Stress
- Load Transfer (Vert & Hoz)
Damage Stress Ratio

Ultimate # Loads (N_f): Shear Stress Ratio (r)

$$N_f = 10^{k_1 + k_2 r}$$

$$r = \frac{\tau}{f_e} + (J_2)^m (\alpha I_1 + K)^n$$

Mechanical Wear:

1) Shear Stress (τ)
2) Shear Strength (f_e): Bound & Unbound Materials

Bulk Consolidation:

1) Bulk Stress (I_1)
2) Bulk Shear (J_2)
Interlayer Strength Model

\[f_e = \sigma_v \mu_e = x_b \left[f_b \right] = \left[x_b \cdot \cos^2 \phi \cdot \left((1 - \text{prob}(\sigma_n > 0)) \cdot f_\tau + (1 - \text{prob}(g_n > 0)) \cdot f_F \right) \right] \]

\[x_b = \frac{h_e - h_u}{h_b - h_u} = 1 - \%E = b + m \mu_e \]

\[h_{e-p} = \frac{h_{e-u}}{2} \left(1 - x_e \right) + \left(x_e \right) h_{e-b} \]

Degree of Bond

\((\text{prob}(\sigma_n > 0)) \) - Risk of Bond Failure; Set
\((1 - \text{prob}(g_n > 0)) \) - Chance of Contact; C & W Behavior

\(f_b \) - Bond Strength
\(f_\tau \) - Cohesive Strength
\(f_F \) - Frictional Strength
Drops on:

- Joints (Approach Slab and Leave Slab)
- Center of the Slab
- Edges and Corners

\[x_b = \frac{h_e - h_u}{h_b - h_u} = 1 - \%E = b + m\mu_e \]
Erosion Results – %E

Comp Section

\[y = 0.0304x - 0.443 \]

\[R^2 = 0.3475 \]

\[\mu_e \]

\[\chi_b \]

% Erosion

% Erosion

Eqv Thickness

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

0.00 5.00 10.00 15.00 20.00 25.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 5.00 10.00 15.00 20.00 25.00

1-Jan-90 1-Jan-92 1-Jan-94 1-Jan-96 1-Jan-98 1-Jan-00 1-Jan-02 1-Jan-04 1-Jan-06 1-Jan-08 1-Jan-10 1-Jan-12 1-Jan-14

Erosion Test and Shear Model

\[f_e = x_b \left[\cos^2 \phi \right] \cdot \left(f_\tau + f_F \right) \]
Displacement Results

- **Flexbase 3% Cement Treated**
- **RC 3% Cement Treated**
- **RAP-124 3% Cement Treated**
- **RAP-327 3% Cement Treated**
Layer Agnostic-Based Performance Modeling
Included to faulting model by 5 classes of erodibility based on percent of stabilizer and compressive strength

\[FAULTMAX_i = FAULTMAX_0 + C_7 \times \sum_{j=1}^{m} DE_j \times \log(1 + C_5 \times 5.0^{EROD}) C_6 \]

\[FAULTMAX_0 = C_{12} \times \delta_{curling} \times \left[\log(1 + C_5 \times 5.0^{EROD}) \times \log \left(\frac{P_{200} \times WetDays}{P_5} \right) \right]^{C_6} \]

Where:
- \(FAULTMAX_i \) = maximum mean transverse joint faulting for month \(i \) in
- \(FAULTMAX_0 \) = initial maximum mean transverse joint faulting in
- \(EROD \) = base/subbase erodibility factor
- \(DE \) = differential deformation energy accumulated during month \(i \)
- \(C_{12} = C_1 + C_2 \times FR_{0.25} \)
- \(FR \) = base freezing index defined as percentage of time the top base temperature is below freezing (32 \(^\circ\)F) temperature
- \(\delta_{curling} \) = maximum mean monthly slab corner upward deflection PCC due to temperature curling and moisture warping
- \(P_5 \) = overburden on subgrade, lb
- \(P_{200} \) = percent subgrade material passing #200 sieve
- \(WetDays \) = average annual number of wet days (greater than 0.1 in rainfall)
Calibration

$$\% E = \frac{f}{f_{\infty}} = e^{-\left(\frac{\rho}{D}\right)^\beta}$$

Faulting (f) vs. Traffic (N)
Isolate Two Unknowns: β and $\ln(f_\infty)$

\[
\% E = \frac{f}{f_\infty} = e^{-\left(\frac{\rho}{D}\right)^\beta}
\]

\[
\ln(f) = \ln(f_\infty) - \left(\frac{\rho}{D}\right)^\beta
\]

Taking the derivation with respect to N_e:

\[
\frac{1}{f} \cdot \frac{\partial f}{\partial N_e} = -\frac{\beta}{N_e} \ln\left(\frac{f}{f_\infty}\right)
\]

\[
\frac{\partial f}{\partial N_e} = -f \frac{\beta}{N_e} \ln(f) + f \frac{\beta}{N_e} \ln(f_\infty)
\]

\[
y = b + mx
\]
Find \((N_{\infty}) \) and Damage Parameters

\[
\%_0 E = \frac{f}{f_{\infty}} = e^{-\left(\frac{\rho}{D}\right)^\beta}
\]

\[
\ln(-\ln(%_0 E)) = \beta_e \ln\left(\rho_e\right) - \beta_e \ln(D)
\]
Ridgeway, H., *Infiltration Of Water Through The Pavement Surface*

\[q_i = I_c \left(\frac{N_c}{W_p} + \frac{W_c}{W_p C_s} \right) + k_p \]

Where

- \(q_i \): Infiltration rate per unit area, \(\text{ft}^3/\text{day}/\text{ft}^2 \)
- \(I_c \): Joint infiltration rate, \(\text{ft}^3/\text{day}/\text{ft} \)
- \(N_c \): Number of longitudinal Joints
- \(W_p \): Width of pavement lane subjected to infiltration (ft)
- \(W_c \): Length of transverse joints (ft)
- \(C_s \): Joint Spacing (ft)
- \(K_p \): Concrete infiltration rate, \(\text{ft}^3/\text{day}/\text{ft}^2 \)
Joint Infiltration Model

\[I_i = \frac{2}{3} C_d \sqrt{2g} \left(\sqrt{H} \right)^3 \]

where

- \(I_i \) = Infiltration rate per unit area, \(\text{ft}^3/\text{s}/\text{ft} \)
- \(C_d \) = Calibrated drag or infiltration coefficient redefined as:
 \[C_d = \frac{I_{im}}{\frac{2}{3} \sqrt{2g} H_{avg}^{3/2}} \]
- \(g \) = Acceleration due to gravity, \(\text{ft}/\text{s}^2 \)
- \(H \) = Pressure head over the joint, (ft)
- \(I_{im} \) = Measured infiltration rate per unit area, \(\text{ft}^3/\text{s}/\text{ft} \)
Drag Coefficient

\[C_d = \frac{I_{im}}{2\sqrt{3/2}} \frac{w}{H} + c \ln(Fr) + d \left(\frac{w}{H} \right)^2 + e\left(\ln(Fr) \right)^2 + f \frac{w}{H} \ln(Fr) \]

where

- \(w \) = joint opening, (ft)
- \(H \) = Depth of sheet flow (ft)
- \(Fr \) = Froude Number = \(\frac{v^2}{gL} \) (6)
- \(v \) = Velocity of flow, (ft/s)
- \(g \) = Acceleration due to gravity – 32.174 ft/s^2
- \(L \) = Characteristic length, i.e. H (ft)
- \(a, b, c, d, e, f \) = Calibration coefficients (see Table 1)
Infiltration Model – Input (C_d & H)

\[I_i = \frac{2}{3} C_d \sqrt{2g \left(\sqrt{H} \right)^3} \]

\[H = \left(\frac{q_r n}{1.486 \cdot \frac{1}{\sqrt{s}}} \right)^{\frac{3}{5}} \]

where

\[q_r = \text{Volume of runoff (sheet flow) per unit length (ft}^3/\text{t/ft)} \]

\[n = \text{Manning’s } n \ (\text{t/ft}^{1/3}) \]

\[s = \text{Slope of the drainage surface} \]
Number of Wet Days

\[NWD = P\%_0 \times 365 \]

\[P = f(P_1, P_2) \]

\(P \) is an adjustment factor that contains three factors:

P1: Probability of the Rain (\(\# \) of rainfalls / 365)

P2: Probability of wet subbase = \(\text{prob}\{(x) > 0 \} \)

1. Rainfall
2. Joint Sealant
3. Sub-base drainage
\[I_i = \frac{2}{3} F_c C_d \sqrt{2g} \left(\sqrt{H} \right)^3 \]

\[Q = k h_c \times 1.92 h_b^{-0.403} \]

\[m = I_i - q_s; \]

\[\text{Var}\{x\} = \text{Var}\{I_i\} + \text{Var}\{q_s\} \]

Flow Capacity vs Expected Inflow
Investigate Bond Strength: Dirtiness

*Current study (Bhardwaj 2018)

Investigate bond strength: Moisture

Measuring Dielectric Constant (DC) → Percometer quantify moisture level

Moisture determinations (Kim 2018)
Joint Sealant Adhesive Failure

Adhesive failure probability at joint sealant

- Improvement of configuration design
- Stress at interface
- Bond strength
- Proper joint preparation
- Failure

Well bonded vs Low quality bonding
Joint Sealant Behavior

- **Program:** Abaqus
- **Input material property**
 - Tensile strength test data set for a sealant
 - Hyper-elastic behavior model: Mooney-Rivlin model
 - Bond strength test data set

Shape Factor (SF) = W/D

where

- \(W \) = Sealant width
- \(D \) = Sealant edge thickness

Degree of Curvature (DoC) =

\[
2 \times \frac{D'}{W} \times SF = 2 \frac{D'}{D}
\]

where

- \(D' \) = Sealant center thickness
- \(SF \) = Shape factor = \(W/D \)

Stress analysis result for changing effect of the SF

Stress analysis result for changing effect of the DoC
Traffic Model

\[r_l = \sqrt{\frac{P_l}{p\pi}} \]

\[\sum_{k=1}^{3} \%AT_k = 100\% \]

\[\%SA = \%AT_{SA} \cdot \%Trucks \]

\[\%TA = \%AT_{TA} \cdot \%Trucks \]

\[\%Trid = \%AT_{Trid} \cdot \%Trucks \]

\[%F_{jk\ell} = a + b \frac{1}{\ln(r_{jk\ell})} + c \frac{1}{r_{jk\ell}} \text{ for } r_{jk\ell} > r_L \]

\[%F_{jk\ell} = \left(\frac{r_{jk\ell} - r_{min}}{r_L - r_{min}} \right) \cdot %F_L \text{ for } r_{jk\ell} \leq r_L \]
Traffic Model

\[ADTT = ADT \cdot LDF \cdot \%Trucks \]

\[ESAL_i = ADTT \cdot \sum_{l=1}^{39} \sum_{k=1}^{3} \sum_{j=1}^{10} \left(\%F_{jkl+1} - \%F_{jkl} \right) \cdot \%AT_{kl} \cdot EAF_{kl} \cdot ELF_{kl} \cdot SD_{l} \cdot EWF \cdot GF \cdot 365 \]

where

- \(TC_i \) = Truck Category [AASHTOWare, 2] (i = 1 to 17 AASHTO; 1 to 4 ACI; or custom)
- \(VC_j \) = Vehicle Classification [1] (j = 10)
- \(\%AT_k \) = %Axle Type (k = 3) (see Table 1)
- \(NA_{jk} \) = #Axle/Vehicle Classification (see Table 1)
- \(EAF_k \) = Equivalent Axle Factor (Table 3)
- \(\%F_{jkl} \) = % Load Distribution Table (l = 39)
- \(ELF_{l} \) = Equivalent Load Factor wrt SA (Table 3)
- \(SD_{l} \) = Seasonal Distribution (l = 4)
- \(EWF \) = Equivalent Wander Factor (Table 3)
- \(LDF \) = Lane Distribution Factor
- \(GF = \frac{\left(\frac{1}{1+r}\right)^n - 1}{r} \) (non-linear); =n(1+r) linear
Erosion Process In Design

- Damages the Slab/Subbase Interface
- Lowers Friction
- Reduces Composite Slab Thickness
- Reduces k-Value
- Increases Stress
 - Bending Stress
 - Shear: Loss of LT
Wheel Load Model

<table>
<thead>
<tr>
<th>Stress Type</th>
<th>Crack Type</th>
<th>Pavement Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jointed</td>
</tr>
<tr>
<td>SLB</td>
<td>Bottom up; typically mid-slab</td>
<td>Erosion reduces bond in the mid-slab region</td>
</tr>
<tr>
<td>SLT</td>
<td>Top down; typically at the quarter point</td>
<td>Occurs in slabs subject to slab lift-off</td>
</tr>
<tr>
<td>STB</td>
<td>Bottom up; typically in the wheel path</td>
<td>Erosion reduces bond in the wheel path</td>
</tr>
<tr>
<td>STT</td>
<td>Top down; typically between the wheel paths</td>
<td></td>
</tr>
</tbody>
</table>

\[
%\text{Cracking} = \frac{100}{1 + C_4 D^{C_5}}
\]

\[
\log(N_f) = C_1 \left(\frac{1}{r}\right)^{C_2}
\]
Faulting and Erosion Damage

\[D = D_{i-m} \]

\[\%E = \left(x_b \frac{\partial \delta_t}{\partial X} \right) \left(\frac{E_p}{2(1+v)} \right) \left(\frac{1}{\psi} \right) \]

\[r_{i-m} = (x_b) \frac{\partial \delta_t}{\partial X} \frac{E_p}{2(1+v)} \left(\frac{1}{\psi} \right) \]

\[D = D_{i-h} + D_{i-h} \]

\[-12n \cdot V \left[x_s S - r \cos \theta \right] \]
Design components consist of three (3) main layouts:

- Model Tree Layout
- Properties and Settings Layout
- Plot and Log Layout
Properties and settings layout

Project Name

INPUT
- Cement concrete
- Base
- Subgrade
- Traffic 1
- Climate 1
- Pavement type
- Structure 1

MATERIAL MODEL
- ANALYSIS
- RESULTS

Name: Cement concrete
Type Info: Portland Cement Concrete MIX

Custom mixture

User Defined

Mixture Properties:
- PCC Elastic modulus, 28 days (psi): 4.40E+06
- PCC Poisson's ratio: 0.15
- PCC Coefficient of thermal expansion (1/°F): 5.50E-06
- PCC Compressive strength, 28 days (psi): 10000
- PCC Modulus of rupture, 90 days (psi): 750
- PCC Modulus of rupture, 28 days (psi): 675
- PCC Top of Slab Strength Reduction Factor: 0.8
- PCC Tensile strength, 28 days (psi): 473
- PCC Ultimate drying shrinkage (in/in): 600E-6
- PCC Thermal diffusivity (ft^2/day): 1.22
- Cement content (lb/yd^3): 600
Plotting - Faulting

Faulting vs Design Life

- Name: RESULTS
- Type Info: Result
- Select Data: Erosion - Faulting
- Range:
 - Starting year: 1
 - Ending year: 20
- Plot Data

Design life (years)
Faulting
Erosion is a result of pavement type, traffic, base type, and drainage/joint seal design
 - Sealant Installation affects erosion life
- Subbase shear strength is a key to erosion resistance
- Field evaluation reveals that slab corners and edges are critical erosion areas
- Erosion affects slab stresses and joint faulting
- Erosion modeling in design must be fully integrated
THANK YOU